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Abstract—Ensemble learning has long been known to be a re-
liable and consistent way to improve generalization performance
across a wide range of machine learning tasks. Instead of training
and making predictions with a single model, ensembles use sev-
eral independent models and combine their predictions together.
However, training several independent models from scratch can
become prohibitively expensive as deep neural networks continue
to grow in both scale and complexity. Many approaches have
been introduced to alleviate these large computational costs, often
balancing tradeoffs between training cost, inference cost, storage
cost, member diversity, and population size. These low-cost meth-
ods make ensemble learning much more accessible to researchers
and practitioners, while significantly improving generalization
performance in resource constrained environments. This work
aims to provide a comprehensive overview of the state of this
field.

I. INTRODUCTION

Ensemble learning is effective at improving generalization
performance across a wide range of machine learning tasks.
Instead of training and making predictions with a single
model, ensembles instead use several independent models
and combine their predictions together. The combination of
multiple predictions can help to reduce bias or variance and
can significantly improve performance when compared to a
single model [2], [5].

Ensembles of neural networks in particular have demon-
strated excellent results, being used to win many high profile
machine learning competitions [24], [29], [42]. However,
as modern neural networks continue to grow in both scale
and complexity, the cost associated with ensemble learning
quickly becomes untenable. A single state of the art network
requires several decades worth of GPU hours and hundreds of
thousands of dollars in cloud compute costs to train [3], [30].
Inference and storage can also be costly with these networks
as they contain billions of parameters and require hundreds of
gigabytes of memory.

Low-cost ensemble methods have become increasingly im-
portant as they significantly reduce the computational cost
associated with traditional ensemble learning, while retaining
many generalization benefits that ensemble learning affords.

Several methods have been introduced to alleviate ensemble
cost that we broadly categorize as pseudo-ensembles, temporal
ensembles, or evolutionary ensembles. Pseudo-ensembles train
several models under the guise of a single monolithic ar-
chitecture. Temporal ensembles encompass methods that save

snapshots or checkpoints of a single model throughout train-
ing. Evolutionary ensembles leverage concepts like mutation,
recombination, and selection to spawn new child networks.
While these methods vary significantly in their approach to
reducing cost, the primary idea behind each is to share either
network structure, gradient information, or learned parameters
among ensemble members.

The sharing of information between ensemble members is
effective at reducing training cost, as each ensemble member
avoids the need to be trained from scratch. However, this
invariably reduces diversity between members, which can
have significant impact on generalization performance [20].
If each model makes the same predictions or learns the
same feature representations, then there is little benefit to be
gained from combining predictions. Diversity plays a critical
role in ensemble learning research and the advantages and
disadvantages of low-cost methods often relies on a trade-off
between training cost, model accuracy, and member diversity.

The majority of recent low-cost ensemble learning papers
focus primarily on supervised learning and image classifi-
cation. Experiments include several standardized benchmarks
with deep convolutional residual networks on the CIFAR and
ImageNet datasets and evaluations of robustness using cor-
rupted and perturbed validation datasets. While these bench-
marks are mostly standardized, there are small inconsistencies
with the training budget and population sizes between meth-
ods, which can make it hard to fairly compare some of the
published results.

In this paper, we aim to provide a comprehensive overview
of the state of low-cost ensemble learning. We discuss a
number of the most popular low-cost ensemble methods and
organize them into a new taxonomy based on their primary
means for reducing cost. We compare and contrast these
methods and discuss published results on standard benchmarks
and diversity evaluations. Finally, we discuss limitations of
the current state of the field and introduce promising future
research directions. This field has significant potential impact
for improving state of the art while making ensemble learning
more accessible to researchers and practitioners.



Fig. 1. An illustration from Huang et al. demonstrating the optimization trajectory of a standard network in the leftmost figure and a snapshot ensemble in
the rightmost figure. A cyclic learning rate schedule encourages convergence to unique local optima that are subsequently saved for the ensemble [15].

II. OVERVIEW OF LOW-COST METHODS

There is no established taxonomy for categorizing low-cost
ensemble learning approaches in the literature. However, we
do note commonalities among methods and we find that many
approaches tend to cluster around three primary ideas. We
categorize these ideas under the names: pseudo-ensembles,
temporal ensembles, and evolutionary ensembles.

A. Pseudo-Ensembles

Bachman et al. formalized the term pseudo-ensemble by
describing these methods as: a (possibly infinite) collection
of child models spawned from a parent model by perturbing
it according to some noise process [1]. The authors use the
term “spawned” to describe the creation of ensemble members,
implying that independent networks are created or gener-
ated. However, the paper further elaborates and ultimately
describes pseudo-ensembles as techniques that implicitly train
ensembles under the guise of a single monolithic architecture
[1]. This distinguishes pseudo-ensembles from other methods
where independent members are created and trained separately.

Dropout is the canonical example of a pseudo-ensemble
where neurons are randomly masked during training for each
mini-batch of data. Dropout is essentially training a unique
subnetwork (ensemble member) for each forward and back-
ward pass. During inference, dropout is turned off so that no
neurons are masked, which results in each of the subnetworks
being implicitly ensembled together [31].

Several variants of Dropout have since been introduced.
DropConnect masks individual connections rather than neu-
rons [37]. Stochastic Depth Networks mask entire layers of
deep residual networks [16]. Since these techniques mask
large parts of the network during training, significantly more
forward passes are needed to fully train a network. However,

the resulting networks tend to converge to better optima than
their standard counterparts.

Some recent works build on the ideas of parameter sharing
in pseudo-ensembles by explicitly encoding relationships in
the network architectures themselves. TreeNets are architec-
tures that consist of zero or more shared layers that then split
into independent branches, each with its own output head. Dur-
ing training, the shared layers accumulate the gradients from
each independent branch and during testing, each path from
input to one of the outputs can be treated as an independent
ensemble member [21].

Multiple-Input Multiple-Output (MIMO) is a recent varia-
tion on TreeNets that uses multiple input heads and multiple
output heads with no independent branches. Instead, the entire
network is shared. Each input head is fed different samples and
each of the output heads is trained to predict the corresponding
input. [11]

BatchEnsembles build on parameter sharing by decompos-
ing weight matrices into a Hadamard product of a single
shared set of weights (slow weights) and a rank-1 matrix
(fast weights) for each member [39]. The rank-1 matrix is
represented by two single column vectors which significantly
reduces the storage cost for each member, and the Hadamaard
product is much cheaper computationally than matrix multipli-
cation which results in little computational overhead compared
to inference with a single network.

Knowledge Distillation was introduced to alleviate the in-
ference and storage costs of ensembles and large networks.
This approach is based the idea that you can transfer the
knowledge learned from a large network to a small network by
training the small network using the predictions of a trained
large network, instead of the raw training labels. This enables
the small network to learn features that would be hard to



Table I. A generalized overview of some of the benefits and drawbacks of various low-cost ensemble learning strategies. All categories are relatively and
subjectively graded according to their primary cost reduction idea. Individual methods within each category may differ in their strengths or weaknesses from
the proposed scale.

Method Training Inference Storage Diversity Population Size

Pseudo ✓ ✓✓ ✓✓ - -
Temporal ✓✓ - - ✓ ✓
Evolutionary ✓ - - ✓✓ ✓✓

disentangle if trained from scratch. This can be done in the
context of ensemble learning by training a single network
on the predictions made by a fully trained ensemble. The
single network then approximates the behavior of the ensemble
without needing to store and test all of the models separately
[14].

Pseudo-ensembles are also closely related to recent ro-
bustness and optimization trends in neural network train-
ing. Stochastic Weight Averaging (SWA) is an optimization
technique where the weights of a model are averaged over
several states taken from the final training epochs. These final
epochs often use a very small learning rate and the weights
tend to bounce around a single optima. Instead of using
these checkpoints as independent models and averaging their
predictions, instead the weights themselves at these locations
are averaged to create a more robust single model [17].

Model Soups operate on a similar principle to Stochastic
Weight Averaging and have recently shown state-of-the-art
performance on large image classification benchmarks. Instead
of taking the final epoch checkpoints of a single model, Model
Soups average the weights of several independent models that
are derived from the same pre-trained network but are each
fine tuned with different hyperparameters [43].

Pseudo-ensembles are much more memory efficient than
other low-cost ensemble methods as members are embedded
within a single network structure. These techniques are gen-
erally very fast at performing inference, as forward passes
do not need to be independently computed for each ensemble
member. This makes these techniques highly valuable for envi-
ronments where memory and inference cost is prioritized, like
in embedded systems or edge computing. However, pseudo-
ensembles do tend to need more training epochs to converge
and the resulting models are less diverse than other ensemble
methods, as large parts of the network structure are shared.

B. Temporal Ensembles

Fast Committee Learning introduced the idea that ensembles
can be created by selecting and saving checkpoints over
a single network’s training trajectory [34]. We call related
approaches temporal ensembles since these methods are based
on saving model states over time.

Horizontal Voting Ensembles experimented with saving a
contiguous number of states from every single epoch taken
late in the training phase. Checkpoints taken early in training
will be much less accurate than those taken later in training,
suggesting that its worth using less diverse models if their
overall accuracy is better [44].

Snapshot Ensembles make use of a repeating cyclic schedule
that slowly decays the learning rate from a large value to a
small value. The large rates encourage the model to move
further in the parameter space before converging to a local
optima which is saved at the end of each cycle [15].

Fast Geometric Ensembles build on Snapshot Ensembles by
analyzing the loss surfaces found at and between local optima.
The local optima found at the end of each snapshot cycle tend
to be connected by simple curves that maintain training and
test accuracy throughout. By interpolating the weights between
optima found using the snapshot ensemble algorithm, Fast
Geometric Ensembles can generate much larger ensembles by
saving model states across these high accuracy pathways [9].

FreeTickets is a recent method that combines ideas from
sparse neural network training and temporal ensemble learn-
ing. FreeTickets use a dynamic sparse training algorithm that
isolates a unique sparse subnetwork at each cycle which is
optimized with a cyclical learning rate schedule. At the end of
every optimization cycle, the sparse model state is saved before
updating the connectivity for the next cycle. The differences
between the network structure of each member encourages
greater diversity between members [22].

Temporal Ensembles are very efficient for training, since
they typically don’t need any more training time than a single
network. The performance of these temporal ensembles often
compete with traditional dense ensembles at a significant
fraction of the compute cost. Inference and storage is more ex-
pensive than pseudo-ensembles since each ensemble member
needs to be evaluated independently. Additionally, temporal
ensembles tend to have smaller potential population sizes than
evolutionary ensembles as member generation is dependent on
cycle length and the total training epoch budget. The members
of certain temporal ensembles can struggle with diversity as
model checkpoints taken later in the training process tend to
be highly correlated.

C. Evolutionary Ensembles

Evolutionary computation has been a popular alternative to
gradient based optimization for decades. Evolutionary methods
utilize concepts inspired by biological evolution like natural
selection, mutation, and recombination to optimize populations
over time. The usage of populations in evolutionary algorithms
leads to a natural connection to ensemble learning [7]. We
describe low-cost ensemble methods as evolutionary if the
primary idea is to spawn new child networks that inherit
parameters or network structure from some parent(s) as a result
of evolutionary operators.



Fig. 2. Prune and Tune Ensembles generate diverse children with unique
network connectivity by pruning random parameters from a shared and fully
trained parent.

Traditional evolutionary methods have mostly been con-
cerned with single hypothesis testing, which means that opti-
mization is geared towards selecting a single network with
the best generalization performance from a population [7],
[23]. Evolution Strategies are the most popular of these,
which describes a family of algorithms that generate child
networks by selecting the best models according to fitness
rankings and mutating them with noise perturbations [28].
Several variations of evolution strategies have been introduced
such as Natural Evolution Strategies (NES) and Covariance
Matrix Adaptation Evolution Strategies (CMA-ES). NES gen-
erates new populations according to a weighted average over
the previous population distribution, where the models are
weighted according to their fitness [41]. NES approximates a
natural gradient as mutations encourage models to move in the
direction of previously successful models. CMA-ES is similar
to NES, but uses an incrementally updating covariance matrix
to better explore the state space [10]. The covariance matrix
uses pairwise fitness rankings to skew distributions rather than
a simple weighted average, however this is extremely costly
with high dimensional spaces.

Evolutionary methods have also explored mutations to the
network architecture itself. Neuroevolution of Augmenting
Topologies (NEAT) is perhaps the most popular of these
methods, which starts with a small and simple population
that is slowly complexified over time with additional neurons
and connections, incorporating concepts like speciation to
encourage diversity [32]. Weight Agnostic Neural Networks
have shown that evolution of network architectures with a
single shared value for all weights can encode solutions to
reinforcement learning problems [8].

While evolution is highly scalable due to its distributed
nature, it tends to be extremely sample inefficient. Modern
neural networks can contain billions of parameters which
makes gradient based optimization much more efficient. Re-
cent evolutionary works have aimed to combine gradient
optimization with evolutionary ideas.

Evolutionary Ensembles with Negative Correlation Learn-
ing (EENCL) incorporates a standard gradient based training
cycle for each evolutionary generation. Multiple independent

networks are trained simultaneously with the inclusion of a
correlation penalty error term to encourage diversity. At each
generation, the fittest individuals are selected as parents for
the next generation, and child networks are spawned with
normally distributed weight perturbations [23].

It’s only recently that low-cost methods have been intro-
duced that build on some of these evolutionary principles.
MotherNets and Prune and Tune Ensembles are two such
prominent examples, which both work by first training a single
parent network and then spawning children with mutated
network architectures that are then further optimized.

MotherNets “hatch” children from a small, trained network
where additional neurons and layers are added around this
trained core network. The weights of the child networks are
adjusted using function preserving network morphisms, in
order to ensure that the added layers and neurons do not catas-
trophically affect the core networks functionality. Diversity is
encouraged by adding different amounts of neurons and layers
to each child [38].

Prune and Tune Ensembles (PAT) instead spawn children by
cloning and randomly pruning a large, trained network. Each
child ends up with a unique network connectivity as a result of
pruning. The children all converge in very few epochs as they
are derived from a fully trained parent network. Optimization
of the children is done with a cyclic learning rate schedule to
encourage more diversity between siblings [40].

Pure evolutionary methods have struggled with the large
dimensionality of modern deep neural networks. These recent
low-cost methods (MotherNets and PAT) offer a glimpse of
how a hybrid of gradient based optimization and evolutionary
ideas can result in fast training and excellent diversity. These
low-cost evolutionary methods offer a unique advantage over
other approaches in that it is extremely cheap to generate
new ensemble members. Once a parent network is trained,
child networks tend to converge quickly while maintaining
diversity thanks to unique network connectivity and learning
rate schedules that encourage divergent movement in the
parameter space. Additionally, the decoupled nature of child
generation and parent training enables more flexibility as pre-
trained models could be used to save significant amounts of
compute. Temporal Ensembles and Pseudo-Ensembles have
necessary architectural or training requirements that limits
their flexibility.

III. DIVERSITY IN LOW-COST ENSEMBLES

Diversity has long been known to be an important con-
sideration in ensemble learning [2], [20], [36]. This is often
explained in ensemble literature with an example of the bias-
variance decomposition of the mean squared error (MSE) [2],
[36]. Given a model’s prediction f and a true target value
from an unknown test distribution y, the mean squared error is
defined to be the expectation of the squared distance between
the models predictions and the true target distribution. Bias is
the difference between the expectation of the model and the
true targets and variance is the squared difference between the
models predictions and its mean.



Fig. 3. A suggested approach for interpretable diversity analysis. Displayed is a collection of feature visualizations for specific neurons selected from child
networks in a Snapshot Ensemble and a Prune and Tune Ensemble. Identical parent networks were used for both ensemble methods and each child is
optimized for the same number of epochs. The same neurons were chosen in each model for visualization. Snapshot Ensemble networks appear to be much
more correlated than Prune and Tune children, suggesting that altered network structure in evolutionary ensembles can significantly impact diversity.

bias = E[f ]− y

var = E[(f − E[f ])2]

MSE = E[(f − y)2] = (E[f ]− y)2 + E[(f − E[f ])2]

MSE = bias2 + var

Given an ensemble of M equally weighted estimators, the
decomposition can be further extended to produce the bias-
variance-covariance decomposition [2].

bias =
1

M

∑
i

(E[fi]− y)

var =
1

M

∑
i

E[(fi − E[fi])
2]

covar =
1

M(M − 1)

∑
i

∑
j ̸=i

E[(fi − E[fi])(fj − E[fj ])]

MSE = bias2 +
1

M
var + (1− 1

M
)covar

Generalization error for single models relies upon the op-
timization of both bias and variance, where the tuning of a
model towards high bias can cause it to miss important features
and the tuning of a model toward high variance can cause
it to be highly sensitive to noise. When the decomposition
is extended to an ensemble, the generalization performance
additionally depends on the covariance between models. Ide-
ally, ensemble methods that prioritize diversity will be able to
reduce covariance without increasing the bias or variance of
individual models [2], [36].

Several metrics have been used to quantify diversity in
classification ensembles [20]. The most popular of which are
the Pairwise Output Correlation, Kullback-Leibler Divergence,
and Prediction Disagreement Ratio.

Pairwise Output Correlation: The average correlation
between the raw outputs for each pair of models in the
ensemble.

dcorr(f1, f2) =
1

N

N∑
i=1

cov(f1(xi), f2(xi))

σf1(xi)σf2(xi)

where N is the number of test samples, cov(f1(xi), f2(xi))
is the covariance between two network output vectors for input
xi, and σf(xi) is the standard deviation of the output vector.

Kullback-Leibler Divergence: Also known as relative en-
tropy, KL Divergence approximately measure how different
one probability distribution is from one another. This operates
on the output probabilities of each ensemble member and the
average is measured over all pairwise combinations.

dKL(f1, f2) =
1

N

N∑
i=1

f1(xi) log

(
f1(xi)

f2(xi)

)
where N is the number of test samples and fi(xi) is the output
probabilities for a given model fi and test sample xi.

Prediction Disagreement Ratio (PDR): Rather than com-
paring the differences of the output distributions for each
sample, PDR measures the pairwise ratio of disagreements
between the predicted classes of models.

dPDR(f1, f2) =
1

N

N∑
i=1

argmax (f1(xi)) ̸= argmax (f2(xi))

where N is the number of test samples and argmax(fi(xi))
is the predicted class label for model fi and test sample xi.

These diversity metrics all focus on differences between
the outputs of ensemble members. However, one limitation
of output diversity is that it is intrinsically tied to model
accuracy [20]. An ensemble can display great diversity but
perform much worse than another ensemble if the accuracy of
individual members is slightly worse. So, while these metrics
are fairly standardized across recent low-cost ensemble meth-
ods, it can be hard to fairly compare different methods based
solely on diversity without also taking model performance into
account.



A. Interpretable Diversity Analysis

A growing trend in machine learning research is the study
of neural network interpretability [25]. This field encompasses
techniques that allow for human visualization and interpreta-
tion of the internal feature representations of neural networks.

Feature visualization is the most popular interpretability
method, where the pixel values of an input image are op-
timized to produce an output that maximizes activations of
specific neurons, filters, or layers of a network [27].

This was originally done with gradient descent on the raw
pixels of a randomized input image. However, this resulted in
images with a lot of high frequency noise and nonsensical
patterns [27]. To alleviate this, better visualizations were
created with regularization techniques like transformation aug-
mentations, frequency penalizations, and Fourier decorrelation
[27].

Figure 3 illustrates an example of how feature visualizations
could be useful in investigating diversity between child net-
works from two different low-cost ensemble algorithms. A pre-
trained Inception-V3 model [35] is used as a parent network
for both a snapshot ensemble and prune and tune ensemble.
The snapshot ensemble continues training the parent for two
snapshot cycles of 20 epochs each with the child models being
saved at the end of each cycle. The prune and tune children
are created by cloning and pruning 50% of the parameters of
the parent and continued training for 20 epochs each using a
one cycle learning rate.

Since the same parent network is used for both methods
and all child networks inherit parameters from the same
model, we can visualize the same neurons in each model
to explore how the diversity develops at the feature level in
these methods. A random selection of neurons were chosen,
and feature visualizations were created using the open source
pytorch library lucent [18]. From a qualitative standpoint, the
feature visualizations in snapshot ensembles appear to be much
more correlated than those from prune and tune ensembles,
suggesting that network architecture can significantly impact
the diversity of networks derived from identical parents.

There is potentially great value in applying these kinds
of techniques to low-cost ensemble methods to visualize
how diversity develops and is represented among different
ensemble members that share network structure or parameters.

IV. EXPERIMENTS

Most low-cost ensemble papers include a standardized
benchmark classification task on the CIFAR-10 and CIFAR-
100 datasets with a modern wide residual network architecture.
There are notably fewer results on the much larger scale
ImageNet dataset, likely due to the much higher computational
costs and resources required.

A. Datasets

CIFAR: consists of 60,000 small natural colored images of
32x32 pixels in size. Those 60,000 images are split up into
50,000 training images and 10,000 testing images. CIFAR-10
samples from 10 classes of images, while CIFAR-100 samples

from 100 classes of images. CIFAR-100 is more difficult than
CIFAR-10 as each class will have only 500 training samples
compared to 5,000 in CIFAR-10 [19].

ImageNet: is a much larger scale dataset consisting of
over 14 million images corresponding to over 100,000 class
labels, called synonym sets, from the WordNet project. The
most commonly used subset of ImageNet, ILSVRC 2012,
was introduced in a seminal computer vision competition
and is now the standard for large scale image classification
projects. This subset consists of 1,281,167 full color images
that correspond to one of 1,000 different class labels. A
validation set is publicly available that consists of 50,000
images. This subset is used for all reported results and all
images are resized to 224x224 pixels [4].

Corrupted Datasets: In addition, these methods are also
evaluated on corrupted versions of CIFAR-10, CIFAR-100
and ImageNet in order to evaluate the robustness to various
perturbations [13]. These additional test sets are generated by
adding 20 different kinds of image corruptions (gaussian noise,
snow, blur, pixelation, etc.) at five different levels of severity to
the original CIFAR and ImageNet test sets. The total number
of images in each of the corrupted CIFAR sets is 1,000,000
and the total number of images in corrupted ImageNet is
5,000,000.

B. Models

ResNet [12]: ResNets are one of the most popular convolu-
tional vision architectures in deep learning. They popularized
skip connections between groups of layers in order to improve
gradient flow and enable networks to grow much deeper
than was previously possible. The ImageNet experiments use
ResNet-50, a 50 layer version that contains ∼ 25 million
parameters [12].

Wide ResNet [45]: Wide ResNets were introduced as a
variant to the original ResNet, addressing the problem of
diminishing feature reuse in deep residual networks. Wide
ResNets use much wider convolutional layers in the residual
blocks, which demonstrate better performance with signifi-
cantly fewer layers than their ResNet counterparts. The CIFAR
experiments use WRN-28-10, a 28 layer variant that contains
∼ 36 million parameters [45].

C. Method Details

All methods are trained with Stochastic Gradient Descent
with Nesterov momentum µ = 0.9 and weight decay γ =
0.0005 [33]. Unless stated otherwise, all methods use a step-
wise decay schedule for the learning rate. An initial learning
rate of η1 = 0.1 is used for 50% of the training budget
which decays linearly to η2 = 0.001 at 90% of the training
budget. The learning rate is kept constant at η2 = 0.001 for
the final 10% of training. For CIFAR, a batch size of 128 is
used for training and random crop, random horizontal flip, and
mean standard scaling data augmentations are applied for all
approaches. For ImageNet, a batch size of 4096 is used. Data
is resized to 256x256, center cropped to 224x224 and scaled
with mean standard normalization.



Table II. Results for ensembles of WideResNet-28-10 models on both CIFAR-10 and CIFAR-100 as well as ensembles of ResNet-50 on ImageNet. Results
obtained from [11], [22], [40]. cAcc, cNLL, and cECE correspond to corrupted test sets.

Methods (CIFAR-10/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model 96.0 0.159 0.023 76.1 1.050 0.153 3.6e17 200
Monte Carlo Dropout 95.9 0.160 0.024 68.8 1.270 0.166 1.00x 200
TreeNet (M=3) 95.9 0.258 0.018 75.5 0.969 0.137 1.52x 250
SSE (M=5) 96.3 0.131 0.015 76.0 1.060 0.121 1.00x 200
FGE (M=12) 96.3 0.126 0.015 75.4 1.157 0.122 1.00x 200
PAT (M=6) (AR + 1C) 96.5 0.113 0.005 76.2 0.972 0.081 0.85x 200

BatchEnsemble (M=4) 96.2 0.143 0.021 77.5 1.020 0.129 4.40x 250
MIMO (M=3) 96.4 0.123 0.010 76.6 0.927 0.112 4.00x 250
EDST (M=7) 96.4 0.127 0.012 76.7 0.880 0.100 0.57x 850
DST (M=3) 96.4 0.124 0.011 77.6 0.840 0.090 1.01x 750
Dense Ensemble (M=4) 96.6 0.114 0.010 77.9 0.810 0.087 1.00x 800

Methods (CIFAR-100/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model 79.8 0.875 0.086 51.4 2.700 0.239 3.6e17 200
Monte Carlo Dropout 79.6 0.830 0.050 42.6 2.900 0.202 1.00x 200
TreeNet (M=3) 80.8 0.777 0.047 53.5 2.295 0.176 1.52x 250
SSE (M=5) 82.1 0.661 0.040 52.2 2.595 0.145 1.00x 200
FGE (M=12) 82.3 0.653 0.038 51.7 2.638 0.137 1.00x 200
PAT (M=6) (AR + 1C) 82.7 0.634 0.013 52.7 2.487 0.131 0.85x 200

BatchEnsemble (M=4) 81.5 0.740 0.056 54.1 2.490 0.191 4.40x 250
MIMO (M=3) 82.0 0.690 0.022 53.7 2.284 0.129 4.00x 250
EDST (M=7) 82.6 0.653 0.036 52.7 2.410 0.170 0.57x 850
DST (M=3) 82.8 0.633 0.026 54.3 2.280 0.140 1.01x 750
Dense Ensemble (M=4) 82.7 0.666 0.021 54.1 2.270 0.138 1.00x 800

Methods (ImageNet/ResNet50) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model 76.1 0.943 0.039 40.5 3.200 0.105 4.8e18 90
TreeNet (M=2) 78.1 0.852 0.017 42.4 3.052 0.073 1.33x 150
BatchEnsemble (M=4) 76.7 0.944 0.050 41.8 3.180 0.110 4.40x 135
MIMO (M=2) 77.5 0.887 0.037 43.3 3.030 0.106 2.00x 150
DST (M=2) 78.3 0.914 0.060 43.7 2.910 0.057 1.12x 400
EDST (M=4) 77.7 0.935 0.064 42.6 2.987 0.058 0.87x 310
Dense Ensemble (M=4) 77.5 0.877 0.031 42.1 2.990 0.051 1.00x 360

[9], [11], [15], [22]. The Independent Model is a baseline
single model result. The Dropout Model includes dropout
layers between convolutional layers in the residual blocks
at a rate of 30% for the CIFAR experiments and 10% for
the ImageNet experiments. Snapshot Ensembles (SSE) use
a cosine annealing learning rate with an initial learning rate
η = 0.1 for a cycle length of 40 epochs [15]. Fast Geometric
Ensembles (FGE) use a pre-training routine for 156 epochs.
A curve finding algorithm then runs for 22 epochs with a
cycle length of 4, each starting from checkpoints at epoch
120 and 156. TreeNets, [21], BatchEnsemble is trained for
250 epochs on CIFAR and 135 epochs on ImageNet [39].
MIMO and TreeNet [11] are trained for 250 epochs on CIFAR
and 150 epochs on ImageNet. FreeTickets introduces several
configurations for building ensembles. We include their two
best configurations for Dynamic Sparse Training (DST, M=3,
S=0.8) and Efficient Dynamic Sparse Training (EDST, M=7,
S=0.9) on CIFAR and (DST, M=2, S=0.8) and (EDST, M=4,
S=0.8) on ImageNet. Prune and Tune Ensembles (PAT)
train a single parent network for 140 epochs. Six children are
created with anti-random pruning (50% sparsity) and tuned

with a one-cycle learning rate for 10 epochs. The tuning
schedule starts at η1 = 0.001, increases to η2 = 0.1 at 1
epoch and then decays to η3 = 1e− 7 using cosine annealing
for the final 9 epochs.

D. Metrics

All methods include results for Accuracy (Acc), Negative
Log Likelihood (NLL), and Expected Calibration Error (ECE).
Results on the corrupted datasets are prepended with c (cAcc,
cNLL, cECE). The total number of floating point operations
(FLOPs) and training epochs are also reported.

Acc =
1

N

N∑
i

I(ŷi = yi)

where N is the number of samples, ŷ is the predicted class
label, and y is the actual class label.

NLL =
1

N

N∑
i

(−
C∑
c

log
exp(ŷn,yn)∑
c exp(ŷn,c)

yn,c)



Table III. Prediction Disagreement Ratio (PDR) and KL divergence between
ensemble members on CIFAR-10 with WideResNet-28x10. Results reported
from [11], [22], [40]

Methods dPDR ↑ dKL ↑ Acc ↑

Treenet 0.010 0.010 95.9
BatchEnsemble 0.014 0.020 96.2
EDST Ensemble 0.026 0.057 96.4
MIMO 0.032 0.081 96.4
Dense Ensemble 0.032 0.086 96.6
DST Ensemble 0.035 0.095 96.4
Prune and Tune Ensemble 0.036 0.090 96.5

where N is the number of samples, C is the number of
classes, ˆyn,yn

is the predicted value for the correct class yn,
ˆyn,c is the predicted output for class c, and yn,c is the actual

output for class c.

ECE =
∑
b

nb

N
|acc(b)− conf(b)|

where nb is the number of predictions in bin b, N is the total
number of samples, and acc(b) and conf(b) are the accuracy
and confidence of bin b respectively [26].

A subset of methods also report prediction disagreement
ratio and KL divergence between ensemble members on the
CIFAR-10 experiment.

V. LIMITATIONS AND FUTURE WORK

Low-cost ensemble algorithms vary significantly in how
training time is organized. We find that there is a lot of
variation in population size, total FLOP(s), and total training
epochs amongst methods, with several papers reporting and
comparing results that do not use identical training budgets.
In all cases the training procedures are transparent, however it
can be hard to fairly assign significance due to the differences
in training configuration. Additionally, the time and resource
intensive nature of ImageNet has led to a lack of results on this
benchmark compared to the small scale and easily accessible
CIFAR datasets.

Low-cost ensemble research primarily focuses on image
classification with ResNets and Wide ResNets. New model
architectures like Vision Transformers are reporting state of
the art results and growing in popularity in computer vision
[6]. There is a lot of value in exploring the efficacy of low-cost
ensembles with novel architectures and in completely differ-
ent domains like natural language processing, reinforcement
learning or continual learning.

The current state of the art computer vision models are often
pretrained with unsupervised learning on massive datasets like
the JFT-300M and JFT-3B [46]. These large scale datasets
could have different training and generalization dynamics
that would be interesting to explore with low-cost ensemble
methods.

There is also a lot of potential for further exploring diversity
in low-cost ensembles in a standardized and systematic way.
There are serious limitations with output diversity metrics as
they give little insight into how and why different predictions

are made.2 There is a lot of potential for a new qualitative
approach to diversity analysis that could lead to valuable
insights about how diversity develops or could be encouraged
in low-cost ensembles.

VI. CONCLUSION

Ensemble learning has long been known to be an effective
and powerful way to improve performance on a number of
machine learning tasks. As deep neural networks have grown
in popularity and scale, the computational costs associated
with training several independent networks from scratch has
become expensive. Low-cost ensemble methods have intro-
duced ways to share information between members that can
significantly reduce computational cost while retaining the
benefits to generalization that ensemble learning affords.

This paper aims to provide a comprehensive survey of the
state of low-cost ensemble learning. This paper discusses, sum-
marizes, and categorizes a number of popular methods under
a cost reduction taxonomy consisting of pseudo-ensembles,
temporal ensembles, and evolutionary ensembles. Pseudo-
ensembles train multiple members as if they were a part of
a single monolithic architecture. Temporal ensembles train
a single model and save snapshots of it throughout time.
Evolutionary ensembles spawn new children with inherited
parameters from parents using evolutionary operators like
mutation, selection, or recombination. Each of these categories
has benefits and drawbacks according to a balance between
population size, training efficiency, storage cost, inference
cost, and implementation flexibility.

Ultimately, cost is able to be reduced by sharing information
between members. This invariably reduces diversity, which
is a significant factor in the generalization performance of
ensembles. We discuss the importance of diversity in these
papers and we introduce interpretable diversity analysis as
a promising avenue for future research. We include several
benchmark experiments on CIFAR and ImageNet and discuss
some limitations with fairly comparing the various methods.

Low-Cost Ensemble Learning is a really interesting field
with significant potential impact. These low-cost methods
improve generalization performance on a wide variety of
tasks while making ensemble learning more accessible for
researchers and practitioners. The ideas introduced in these
papers leave a solid foundation for future research and they
become more important as machine learning projects continue
to grow in scale.
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